Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225460

RESUMO

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Encéfalo , Ergosterol/uso terapêutico
2.
J Hazard Mater ; 465: 133211, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101008

RESUMO

Water-dispersible colloids (WDCs) are vital for trace element migration, but there is limited information about the abundance, size distribution and elemental composition of WDC-bound thallium (Tl) and arsenic (As) in mining-contaminated soils and sediments solutions. Here, we investigated the potential mobilization of WDC-bound Tl and As in soils and sediments in a typical Tl/As-contaminated area. Ultrafiltration results revealed on average > 60% of Tl and As in soil solution (< 220 nm) coexisted in colloidal form whereas Tl and As in sediment solution primarily existed in the truly dissolved state (< 10 kDa) due to increased acidity. Using AF4-UV-ICP-MS and STEM-EDS, we identified Fe-bearing WDCs in association with aluminosilicate minerals and organic matter were main carriers of Tl and As. SAED further verified jarosite nanoparticles were important components of soil WDC, directly participating in the migration of Tl and As. Notably, high pollution levels and solution pH promoted the release of Tl/As-containing WDCs. This study provides quantitative and visual insights into the distribution of Tl and As in WDC, highlighting the important roles of Fe-bearing WDC, soil solution pH and pollution level in the potential mobilization of Tl and As in contaminated soils and sediments.

3.
Environ Sci Technol ; 57(26): 9843-9853, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37342885

RESUMO

The association of arsenic (As) with colloidal particles could facilitate its transport to adjacent water systems or alter its availability in soil-rice systems. However, little is known about the size distribution and composition of particle-bound As in paddy soils, particularly under changing redox conditions. Here, we incubated four As-contaminated paddy soils with distinctive geochemical properties to study the mobilization of particle-bound As during soil reduction and subsequent reoxidation. Using transmission electron microscopy-energy dispersive spectroscopy and asymmetric flow field-flow fractionation, we identified organic matter (OM)-stabilized colloidal Fe, most likely in the form of (oxy)hydroxide-clay composite, as the main arsenic carriers. Specifically, colloidal As was mainly associated with two size fractions of 0.3-40 and >130 kDa. Soil reduction facilitated the release of As from both fractions, whereas reoxidation caused their rapid sedimentation, coinciding with solution Fe variations. Further quantitative analysis demonstrated that As concentrations positively correlated with both Fe and OM concentrations at nanometric scales (0.3-40 kDa) in all studied soils during reduction and reoxidation, yet the correlations are pH-dependent. This study provides a quantitative and size-resolved understanding of particle-bound As in paddy soils, highlighting the importance of nanometric Fe-OM-As interactions in paddy As geochemical cycling.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/química , Poluição Ambiental/análise , Solo/química , Coloides/metabolismo
4.
Chemosphere ; 331: 138736, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37088215

RESUMO

Molybdenum disulfide (MoS2) nanosheets are being increasingly employed in various applications. It is therefore imperative to assess their potential environmental implications in a changing world, particularly in the context of global warming. Here, we assessed the effects of MoS2 nanosheets on wheat Triticum aestivum L. under today's typical climatic conditions (22 °C) and future climatic conditions (30 °C), respectively. The results showed that MoS2 nanosheets (10 and 100 Mo mg/L) did not significantly affect wheat plant growth, root morphological traits, and chlorophyll fluorescence, regardless of dose and temperature. However, the metabolic processes were significantly altered in T. aestivum upon exposure to individual MoS2 nanosheets and to a combination of MoS2 nanosheets and future global warming. As a non-specific protective strategy, the wheat plants that were under stress conditions maintained the stability of cell membranes and thus relieved cell injury by accumulating more glycerophospholipids. Warming additionally influenced the nitrogen and carbon pool reallocation in wheat root. MoS2 nanosheets mainly depleted a range of antioxidant metabolites involved in phenylpropanoid biosynthesis and taurine and hypotaurine metabolism, while warming activated vitamin B6 cofactors related to vitamin B6 metabolism. Metabolites involved in glutathione metabolism were uniquely upregulated while most metabolites associated with nucleotide metabolisms were uniquely downregulated in combination-treated wheat. Overall, wheat plants regulated a wide range of growth-related processes, including carbohydrate, amino acids, lipid, vitamins, and nucleotide metabolism, to maintain optimal metabolite pool sizes and eventually global metabolic homeostasis upon different stress conditions. Our findings provide novel insights into MoS2 nanosheets-mediated crop responses under global warming.


Assuntos
Molibdênio , Nanopartículas , Triticum , Carbono , Molibdênio/farmacologia , Molibdênio/química , Nucleotídeos
5.
Nat Commun ; 13(1): 7938, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566249

RESUMO

Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Meningite Criptocócica , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Reprodução Assexuada/genética , Meningite Criptocócica/parasitologia
6.
J Environ Manage ; 324: 116336, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162317

RESUMO

Particulate cadmium (Cd) and zinc (Zn) are ubiquitous in agricultural soils of Pb-Zn mining regions. Water management serves as an important agronomic measure altering the bioavailability of Zn and Cd in soils, but how this affects particulate Cd and Zn and the underlying mechanisms remain largely unknown. Microcosm soil incubation combined with spectroscopic and microscopic characterization was conducted. During a two-year-long incubation period we observed that the concentrations of soil CaCl2-extractable Zn and Cd increased 3-10 times in sphalerite-spiked soils and 1-2 times in smithsonite-spiked soils under periodic flooding conditions due to the long-term dissolution of sphalerite (SP) and smithsonite (SM). However, the increase in the concentration of CaCl2-extractable metals (Zn: from 0.607 mg kg-1 to 1.051 mg kg-1 and Cd: from 0.047 mg kg-1 to 0.119 mg kg-1) was found only in SP-treatment under continuous flooding conditions, indicating the mobilization of metals. Ultrafiltration analysis shows that the nanoparticulate fraction of Zn and Cd in soil pore water increased 5 and 7 times in SP-treatments under continuous flooding conditions, suggesting the increment of metal pools in soil pore water. HRTEM-EDX-SAED further reveals that these nanoparticles were mainly crystalline ZnS and Zn-bearing sulfate nanoparticles in the SP-treatment and amorphous ZnCO3 and ZnS nanoparticles in the SM-treatment. Therefore, the formation of the stable crystalline Zn-bearing nanoparticles in the SP-treatment may explain the elevation of the concentration of soil CaCl2-extractable Zn and Cd under continuous flooding. The potential mobility of particulate metals should therefore be expected in scenarios of continuous flooding such as paddy soils and wetland systems.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/química , Solo/química , Zinco/química , Poluentes do Solo/análise , Água/análise , Cloreto de Cálcio , Ácidos , Abastecimento de Água , Metais Pesados/análise
7.
Chemosphere ; 308(Pt 3): 136589, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162513

RESUMO

Chemical weathering of carbonate-hosted Pb-Zn mines via acid-promoted or oxidative dissolution generates metal-bearing colloids at neutral mine drainage sites. However, the mobility and bioavailability of the colloids associated with metals in nearby soils are unknown. Here, we monitored the mobility of metal(loid)s in soils affected by aeolian deposition and river transport in the vicinity of a carbonate-hosted Pb-Zn mine. Using chemical extraction, ultrafiltration, and microscopic and spectroscopic analysis of metals we find that contamination levels of the soil metals cadmium (Cd), lead (Pb) and zinc (Zn) were negatively correlated with metal extractability. However, nano-scale characterization indicates that colloid-metal(loid) interactions induced potential mobilization and increased risk from metal(loid)s. Dynamic light scattering (DLS) and HRTEM-EDX-SAED analysis further indicate that organic matter (OM)-rich nano-colloids associated with calcium (Ca), silicon (Si) and iron (Fe) precipitates accounted for the majority of the dissolved metal fractions in carbonate-hosted Pb-Zn mine soils. More stable nano-crystals (ZnS, ZnCO3, Zn-bearing sulfates, hematite and Al-Si-Fe compounds) were present in the pore water of aeolian-impacted upland soils rather than in river water-impacted soils. Our results suggest that future work should consider the possibility that potential mobilization of metal(loid)s induced by the weathering and transformation of these metal-bearing nano-crystals to metal-bearing amorphous colloids, potentially elevating metal mobility and/or bioavailability in river water-impacted agricultural soils.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Cálcio/análise , Carbonatos/análise , Monitoramento Ambiental/métodos , Ferro/análise , Chumbo/análise , Metais Pesados/análise , Silício/análise , Solo , Poluentes do Solo/análise , Sulfatos/análise , Água/análise , Zinco/análise
8.
J Hazard Mater ; 429: 128313, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35074749

RESUMO

Cadmium (Cd)-bearing sphalerite and smithsonite ore particles are ubiquitous in soils near metal-mining areas. Previous studies indicate that smithsonite is more readily dissolved in acidic waters and soils than sphalerite but the mobility of Cd and zinc (Zn) derived from these ores in soils is unknown. Using microcosm incubation experiments and microscopic and spectroscopic analysis, we found that the mobility of Cd and Zn derived from smithsonite is higher than from sphalerite. The mobilization rates of Cd (16.6%) and Zn (13.7%) released from smithsonite in soils after 30-day incubation experiments were higher than those from sphalerite (Cd, ~ 1.42%; Zn, ~ 0.75%). Moreover, the percentages of Cd2+ and Zn2+ in soil pore water showed a dynamic increase in smithsonite-spiked treatments but a decrease in sphalerite-spiked treatments. HRTEM-EDX-SAED analysis further indicates the occurrence of dynamic transformation of amorphous Cd and Zn species in soil pore water to crystalline ZnS and iron oxides in sphalerite-spiked soil but crystalline ZnCO3 nanoparticles were dynamically transformed to amorphous metal-bearing species in smithsonite-spiked soil. The opposite transformation trends in pore water of Zn ore-spiked soils provide new insights into the Cd environmental risks in soils affected by Zn mining.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Sulfetos , Zinco/química , Compostos de Zinco
9.
Int J Phytoremediation ; 24(1): 1-11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34004122

RESUMO

Sedum plumbizincicola has been widely employed to remove cadmium (Cd) and zinc (Zn) from contaminated soils and harvested biomass is used to recover valuable metals. While chopping and compacting are efficient methods to rapidly reduce the volume and moisture of fresh biomass, the resulting waste liquor containing metals needs treatment. Two types of contaminated soils were cropped with S. plumbizincicola and top-dressed with this liquor to study metals migration in soil profile and their uptake by plants. There were three treatments: planting and adding liquor (PL), planting without liquor (P) and adding liquor without planting (L). The results showed that Cd and Zn from liquor were mainly retained at top soil 0-10 cm under L treatment. Compared with L treatment, soil Cd and Zn under PL treatment decreased significantly in soil profile due to the extraction of S. plumbizincicola. Moreover, the amount of Cd and Zn extracted by plants was greater than that applied in soils. The metal removal rate by S. plumbizincicola in acid clay loam soil was higher than that in neutral sandy soil. To sum up, metal retaining in soil and uptake by S. plumbizincicola can be used to treat waste liquor from its fresh biomass. Novelty StatementRapid and efficient treatment of harvested fresh biomass is still a challenge although phytoextraction using hyperaccumulator Sedum plumbizincicola has been widely employed. Chopping and compacting fresh biomass are efficient methods for rapid dehydration, however, a large amount of waste liquor that contains of Cd and Zn is produced and needs treatment. In the present study, a simple and low-cost method was tested to dispose the liquor, i. e. irrigating it onto the surface of contaminated soils where grown S. plumbizincicola. It was found that Cd and Zn applied in soils from liquor were mainly retained at top 0-10 cm soil depth where S. plumbizincicola root system was widespread, and the amount of Cd and Zn extracted by plants was greater than that applied in soils. Therefore, it is technically feasible to dispose the waste liquor dewatering from fresh biomass of S. plumbizincicola in its phytoextraction process. This study is helpful for the rapid, efficient and low-cost treatment of harvested fresh biomass in the large-scale application of phytoremediation.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Cádmio/análise , Solo , Poluentes do Solo/análise
10.
PLoS Genet ; 17(10): e1009817, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624015

RESUMO

The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens.


Assuntos
Parede Celular/genética , Cryptococcus neoformans/genética , Glucosamina/genética , Virulência/genética , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética
11.
Environ Sci Technol ; 55(17): 12032-12042, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34372658

RESUMO

Agricultural land degradation is posing a serious threat to global food security. Restoration of the degraded land has traditionally been viewed as an inherently sustainable practice; however, restoration processes render consequential environmental impacts which could potentially exceed the benefit of restoration itself. In the present study, an integrated life cycle assessment analysis was conducted to evaluate life cycle primary, secondary, and tertiary impacts associated with the restoration of the contaminated agricultural land. The results demonstrated the importance of including spatially differentiated impacts associated with managing the land and growing crops. Comparing four risk management scenarios at a contaminated field in Southern China, it was found that the primary and secondary impacts followed the order of no action > chemical stabilization > phytoextraction > alternative planting. However, when tertiary impacts were taken into account, alternative planting rendered much higher footprint in comparison with phytoextraction and chemical stabilization, which provides evidence against an emerging notion held by some policy makers. Furthermore, assuming that the loss of the rice paddy field in Southern China is compensated by the deforested land in the Amazon rainforest, the total global environmental impact would far exceed that of no action, resulting in 687 ton CO2-e ha-1 of climate change impact. Overall, the present study provides new research findings to support more holistic policy making and also sheds lights on the future development of various restoration technologies.


Assuntos
Recuperação e Remediação Ambiental , Agricultura , Animais , China , Poluição Ambiental , Estágios do Ciclo de Vida , Solo
12.
Sci China Life Sci ; 64(8): 1336-1345, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33165808

RESUMO

Cell cycle is a fundamental process underlying growth and development in evolutionarily diverse organisms, including fungi. In human fungal pathogens, cell cycle control generally determines their life cycles, either in the environment or during infections. Thus, cell cycle components can potentially serve as important targets for the development of antifungal strategy against fungal infections. Here, in Cryptococcus neoformans, the most common cause of fatal fungal meningitis, we show that a previously uncharacterized B-type cyclin named Cbc1 is essential for both its infectious and sexual cycles. We reveal that Cbc1 coordinates various sexual differentiation and molecular processes, including meiosis. Especially, the absence of Cbc1 abolishes formation of sexual spores in C. neoformans, which are presumed infectious particles. Cbc1 is also required for the major Cryptococcus pathogenic attributes. Virulence assessment using the murine model of cryptococcosis revealed that the cbc1 mutant is avirulent. Together, our results provide an important insight into how C. neoformans employs shared cell cycle regulation to coordinate its infectious and sexual cycles, which are considered crucial for virulence evolution and the production of infectious spores.


Assuntos
Cryptococcus neoformans/patogenicidade , Ciclinas/metabolismo , Genes Fúngicos Tipo Acasalamento/fisiologia , Estágios do Ciclo de Vida/fisiologia , Desenvolvimento Sexual/fisiologia , Virulência/fisiologia , Animais , Pontos de Checagem do Ciclo Celular , Meiose , Camundongos
13.
Int J Phytoremediation ; 23(7): 715-725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33251821

RESUMO

Rapid and safe treatment of harvested fresh biomass of hyperaccumulators is essential for phytoremediation of metal-contaminated soils. Here, an electro-Fenton (EF) process was used to remove cadmium (Cd) and chemical oxidation demand (COD) from waste liquor from the dewatering of biomass of the hyperaccumulator Sedum plumbizincicola after flocculation precipitation. The results showed that the order of impact of the factors on the removal rate of COD and Cd was pH > electrical current density > H2O2 dosage. Increasing pH promoted Cd removal but hindered COD removal. As current density and H2O2 dosage increased the removal rates of both Cd and COD initially increased and then decreased. Compared to an electrocoagulation process, the addition of H2O2 in EF process greatly enhanced Cd and zinc (Zn) removal. Speciation analysis showed that most of the Cd and Zn in the initial liquor were organically and inorganically complexed. At optimal conditions, e.g., pH 5, current density 15 mA cm-2 and H2O2 dosage 9 g L-1, the removal efficiencies of Cd, Zn and COD reached 99.4, 99.9 and 55.5% after 80 min of EF treatment. Electro-Fenton process can therefore be used to quickly remove trace metals from the waste liquor of the hyperaccumulator.


Assuntos
Sedum , Poluentes do Solo , Poluentes Químicos da Água , Biodegradação Ambiental , Cádmio , Peróxido de Hidrogênio , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos
14.
Environ Pollut ; 258: 113879, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31952010

RESUMO

Deducing soil cadmium (Cd) safety thresholds should be different for rice cultivars with different capacities to accumulate Cd to guarantee safe rice production in China. This study developed prediction models based on soil properties and deduced soil safety thresholds for Cd translocation from thirty-three paddy soils by two contrasting rice cultivars, Yelicanghua (high Cd accumulator, HCd) and Longhuamaohu (low Cd accumulator, LCd). A total of 330 paired field validation samples were used to examine the accuracy of prediction models and soil safety thresholds. The average soil Cd concentration was 0.26 (range 0.057-0.72) mg kg-1. The average brown rice Cd concentrations were 0.14 (0.043-0.55) mg kg-1 in HCd and 0.024 (0.007-0.15) mg kg-1 in LCd in 2017, with corresponding values of 0.16 (0.016-0.66) and 0.027 (0.009-0.10) mg kg-1 in 2018. Soil total Cd and pH were the two most important variables exhibiting direct effects on Cd concentrations in HCd, explaining 66% of the variance across the 33 soils. Soil total Cd, pH and organic carbon (OC) were the three most important variables in LCd, explaining 75% of the variance. Soil safety thresholds ranged from 0.27 to 1.00 mg kg-1 for HCd and from 4.52 to 46.9 mg kg-1 for LCd with pH ranging from 4.5 to 8.0. The validation results suggest ∼60% for HCd or the current soil quality standard (SQS) and 88% for LCd of the validation samples were suitable to meet the food quality standard (FQS), with 6.4% and 12%, respectively, of the validation soils unsuitable for rice cultivation. The current Chinese SQS is too strict for LCd which may be grown safely in moderately polluted soils and the derivation of soil thresholds should therefore consider the abilities of different cultivars to accumulate Cd.


Assuntos
Cádmio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Cádmio/análise , China , Monitoramento Ambiental , Inocuidade dos Alimentos , Oryza/química , Solo , Poluentes do Solo/química
15.
Microb Cell Fact ; 17(1): 175, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424777

RESUMO

BACKGROUND: Autophagy is used for degradation of cellular components and nutrient recycling. Atg8 is one of the core proteins in autophagy and used as a marker for autophagic detection. However, the autophagy of filamentous fungi is poorly understood compared with that of Saccharomyces cerevisiae. Our previous study revealed that disruption of the autophagy related gene Acatg1 significantly enhanced cephalosporin C yield through reducing degradation of cephalosporin biosynthetic proteins in Acremonium chrysogenum, suggesting that modulation of autophagic process is one promising way to increase antibiotic production in A. chrysogenum. RESULTS: In this study, a S. cerevisiae ATG8 homologue gene Acatg8 was identified from A. chrysogenum. Acatg8 could complement the ATG8 mutation in S. cerevisiae, indicating that Acatg8 is a functional homologue of ATG8. Microscope observation demonstrated the fluorescently labeled AcAtg8 was localized in the cytoplasm and autophagosome of A. chrysogenum, and the expression of Acatg8 was induced by nutrient starvation. Gene disruption and genetic complementation revealed that Acatg8 is essential for autophagosome formation. Disruption of Acatg8 significantly reduced fungal conidiation and delayed conidial germination. Localization of GFP-AcAtg8 implied that autophagy is involved in the early phase of conidial germination. Similar to Acatg1, disruption of Acatg8 remarkably enhanced cephalosporin C yield. The cephalosporin C biosynthetic enzymes (isopenicillin N synthase PcbC and isopenicillin N epimerase CefD2) and peroxisomes were accumulated in the Acatg8 disruption mutant (∆Acatg8), which might be the main reasons for the enhancement of cephalosporin C production. However, the biomass of ΔAcatg8 decreased drastically at the late stage of fermentation, suggesting that autophagy is critical for A. chrysogenum cell survival under nutrition deprived condition. Disruption of Acatg8 also resulted in accumulation of mitochondria, which might produce more reactive oxygen species (ROS) which promotes fungal death. However, the premature death is unfavorable for cephalosporin C production. To solve this problem, a plasmid containing Acatg8 under control of the xylose/xylan-inducible promoter was introduced into ∆Acatg8. Conidiation and growth of the recombinant strain restored to the wild-type level in the medium supplemented with xylose, while the cephalosporin C production maintained at a high level even prolonged fermentation. CONCLUSIONS: Our results demonstrated inducible expression of Acatg8 and disruption of Acatg8 remarkably increased cephalosporin C production. This study provides a promising approach for yield improvement of cephalosporin C in A. chrysogenum.


Assuntos
Acremonium/citologia , Acremonium/metabolismo , Autofagia , Cefalosporinas/biossíntese , Acremonium/genética , Acremonium/ultraestrutura , Sequência de Aminoácidos , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Esporos Fúngicos/crescimento & desenvolvimento , Transcrição Gênica
16.
Fungal Genet Biol ; 118: 1-9, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29870835

RESUMO

Acremonium chrysogenum is the industrial producer of cephalosporin C (CPC). We isolated a mutant (AC554) from a T-DNA inserted mutant library of A. chrysogenum. AC554 exhibited a reduced conidiation and lack of CPC production. In consistent with it, the transcription of cephalosporin biosynthetic genes pcbC and cefEF was significantly decreased in AC554. Thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) was performed and sequence analysis indicated that a T-DNA was inserted upstream of an open reading frame (ORF) which was designated AcmybA. On the basis of sequence analysis, AcmybA encodes a Myb domain containing transcriptional factor. Observation of red fluorescent protein (RFP) tagged AcMybA showed that AcMybA is naturally located in the nucleus of A. chrysogenum. Transcriptional analysis demonstrated that the AcmybA transcription was increased in AC554. In contrast, the AcmybA deleted mutant (ΔAcmybA) overproduced conidia and CPC. To screen the targets of AcmybA, we sequenced and compared the transcriptome of ΔAcmybA, AC554 and the wild-type strain at different developmental stages. Twelve differentially expressed regulatory genes were identified. Taken together, our results indicate that AcMybA negatively regulates conidiation and CPC production in A. chrysogenum.


Assuntos
Acremonium/genética , Cefalosporinas/biossíntese , Proteínas Fúngicas/genética , Esporos Fúngicos/genética , Acremonium/crescimento & desenvolvimento , Acremonium/metabolismo , Cefalosporinas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas Luminescentes/genética , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcriptoma/genética
17.
Nat Microbiol ; 3(6): 698-707, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29784977

RESUMO

Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.


Assuntos
Cryptococcus neoformans/fisiologia , Peptídeos/genética , Peptídeos/metabolismo , Percepção de Quorum , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Testes Genéticos , Hifas/crescimento & desenvolvimento , Meiose , Feromônios/metabolismo , Transdução de Sinais
18.
Environ Sci Pollut Res Int ; 25(22): 22075-22084, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29802611

RESUMO

Soil contamination with cadmium (Cd) represents a substantial threat to human health and environmental quality. Long-term effectiveness and persistence of remediation are two important criteria for the evaluation of amendment techniques used to remediate soils polluted with potentially toxic metals. In the current study, we investigated the remediation persistence of a natural sepiolite bearing material (NSBM, containing 15% sepiolite) and ground limestone (equivalent to > 98.0% CaO) on soil pH, Cd bioavailability, and Cd accumulation by pak choi (Brassica chinensis L.) during the growth of four consecutive crops in a Cd-contaminated acid soil with different amounts of NSBM (0, 0.2, 0.5, 1, 2, and 5%). Soil pH levels ranged from 5.21 to 7.76 during the first crop, 4.30 to 7.34 during the second, 4.23 to 7.80 during the third, and 4.33 to 6.98 during the fourth, and increased significantly with increasing the application rate of NSBM. Soil CaCl2-Cd and shoot Cd concentrations decreased by 8.11 to 99.2% and 6.58 to 94.5%, respectively, compared with the control throughout the four cropping seasons. A significant negative correlation was found between soil CaCl2-Cd and soil pH. Combined use of 0.1% lime and NSBM showed greater effects than NSBM alone, especially, when the application rate of NSBM was ˂ 2%. Moreover, pak choi tissue Cd concentrations in the treatments with NSBM addition alone at ≥ 2% or at ≥ 1% NSBM combined with 0.1% lime met the maximum permissible concentration (MPC) over the four crops, allowed by the Chinese and European regulations. Based on the present study, safe crop production in the test soil is possible at a soil pH > 6.38 and CaCl2-Cd < 14 µg kg-1, and soil Cd immobilization by NSBM without or with lime is a potentially feasible method of controlling the transfer of soil Cd into the food chain.


Assuntos
Cádmio/química , Recuperação e Remediação Ambiental/métodos , Silicatos de Magnésio/química , Poluentes do Solo/química , Agricultura , Disponibilidade Biológica , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Cádmio/análise , Cádmio/farmacocinética , Compostos de Cálcio/química , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Óxidos/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/farmacocinética
19.
Fungal Genet Biol ; 107: 67-76, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28830792

RESUMO

Autophagy is a highly conserved degradation system in eukaryotes. Selective autophagy is used for the degradation of selective cargoes. Selective autophagic processes of yeast include pexophagy, mitophagy, and cytoplasm-to-vacuole targeting (Cvt) pathway in which particular vacuolar proteins, such asaminopeptidase I (Ape1), are selectively transported to vacuoles. However, the physiological role of selective autophagy remains elusive in filamentous fungi. ATG11 family proteins asa basic scaffold are essential for most selective autophagy pathways in yeast. Here, Acatg11, encoding a putative ATG11 family protein, was identified and cloned from the cephalosporin producing strain Acremonium chrysogenum based on the sequence similarity of ATG11 superfamily proteins. Disruption of Acatg11 inhibited the maturation of preApe1 during fermentation indicating that Acatg11 is involved in Cvt pathway. In addition, pexophagy and mitophagy were blocked in the Acatg11 disruption mutant (ΔAcatg11). Intriguingly, the nonselective autophagy was deficient in ΔAcatg11 under starvation induction or during fermentation. Disruption of Acatg11 significantly enhanced fungal conidiation, but reduced cephalosporin production. These results indicated that Acatg11 is required for both selective and nonselective autophagy during fermentation and has a strong impact on morphological differentiation and cephalosporin production of A. chrysogenum.


Assuntos
Acremonium/metabolismo , Autofagia/genética , Genes Fúngicos , Acremonium/genética , Cefalosporinas/biossíntese , Cefalosporinas/metabolismo , Citoplasma , Mitofagia/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Esporos Fúngicos/crescimento & desenvolvimento , Vacúolos/metabolismo
20.
Fungal Genet Biol ; 103: 25-33, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28376389

RESUMO

Verticillin is one of the dimeric epipolythiodioxopiperazines (ETPs) which are toxic secondary metabolites produced only by fungi. ETPs have received substantial attention since its complex molecular architecture and a wide range of biological activities. Although biosynthesis of the monomeric gliotoxin has been studied extensively, the biosynthetic pathway of dimeric ETPs is far from being studied. To investigate the biosynthesis of dimeric ETPs and expand our understanding of their dimerization, the verticillin biosynthetic gene cluster (ver) was identified and cloned from a genomic DNA fosmid library of the Cordyceps-colonizing fungus Clonostachys rogersoniana with the designed primers based on the sequence of a nonribosomal peptide synthetase (NRPS) ChaP which was predicted to be responsible for chaetocin biosynthesis in Chaetomium virescens. To validate it, the chaP homologous gene verP in the ver cluster was disrupted. HPLC-MS analysis demonstrated that the verP disruption mutant (ΔverP) completely abolished verticillin production, and it could be restored by introducing a copy of the wild-type verP gene. Further gene disruptions and chemical analysis demonstrated that most genes of this ver cluster were essential for verticillin biosynthesis. Intriguingly, disruption of verP almost abolished the conidiation of Clonostachys rogersoniana and it was partially restored by addition of the fermentation extract which contains verticillin, implying that verticillin or its intermediate plays a role in the Cordyceps-colonizing fungal morphological differentiation.


Assuntos
Hypocreales/genética , Peptídeo Sintases/genética , Vias Biossintéticas/genética , Hypocreales/metabolismo , Indóis/metabolismo , Indóis/toxicidade , Família Multigênica/genética , Piperazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...